Volume 172, 2014

Redox-active electrolyte for supercapacitor application

Abstract

This paper reports the electrochemical behaviour of supercapacitor carbon electrodes operating in different aqueous solutions modified by various redox-active species (hydroxybenzenes, bromine derivatives and iodide). Three dihydroxybenzenes with varying stereochemistry, i.e., –OH substitution, have been considered as electrolyte additives (0.38 mol L−1) in acidic, alkaline and neutral solutions. High capacitance values have been obtained, especially for the acidic and alkaline solutions containing 1,4-dihydroxybenzene (hydroquinone). Bromine derivatives of dihydroxybenzenes were also considered as the additive in alkaline solution for use as a supercapacitor electrolyte, and a significant increase in capacitance value was observed. The redox couple investigated next was an iodide/iodine system, where 2 mol L−1 NaI aqueous electrolyte was utilized. In this case, the most promising faradaic contribution during capacitor operation was achieved. In particular, stable capacitance values from 300–400 F g−1 have been confirmed by long-term galvanostatic cycling (over 100 000 cycles), cycling voltammetry and floating. The mechanism of pseudocapacitance phenomena was discussed and supported by electrochemical and physicochemical measurements, e.g., in situ Raman spectroscopy.

Associated articles

Article information

Article type
Paper
Submitted
25 Mar 2014
Accepted
06 May 2014
First published
06 May 2014

Faraday Discuss., 2014,172, 179-198

Author version available

Redox-active electrolyte for supercapacitor application

E. Frackowiak, M. Meller, J. Menzel, D. Gastol and K. Fic, Faraday Discuss., 2014, 172, 179 DOI: 10.1039/C4FD00052H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements