Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries†
Abstract
Recent studies on all-vanadium redox flow batteries (VRFBs) have focused on carbon-based materials for cost-effective electrocatalysts to commercialize them in grid-scale energy storage markets. We report an environmentally friendly and safe method to produce carbon-based catalysts by corn protein self-assembly. This new method allows carbon black (CB) nanoparticles to be coated with nitrogen-doped graphitic layers with oxygen-rich functionalities (N-CB). We observed increased catalytic activity of this catalyst toward both V2+/V3+ and VO2+/VO2+ ions, showing a 24% increased mass transfer process and ca. 50 mV higher reduction onset potential compared to CB catalyst. It is believed that the abundant oxygen active sites and nitrogen defects in the N-CB catalyst are beneficial to the vanadium redox reaction by improving the electron transfer rate and giving faster vanadium ion transfer kinetics.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        