Issue 42, 2014

DMSO containing ruthenium(ii) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity

Abstract

Synthesis, spectral, electrochemical and single crystal X-ray diffraction data of a new series of DMSO containing bivalent ruthenium hydrazone complexes are presented. XRD data of two of the new complexes revealed an octahedral coordination around the ruthenium ion satisfied by NOS2Cl2 atoms. Electrochemical studies showed the metal centred, quasi-reversible, one-electron redox behaviour of the new complexes. The binding of these complexes with biomolecules such as calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein investigated by different spectrophotometric methods revealed an intercalative mode of interaction. The in vitro cytotoxicity of these complexes evaluated by the MTT assay on a panel of cancer and normal cell lines indicated that the above complexes are more toxic to cancer cells with a few micromolar concentrations as the IC50 value, but are significantly less toxic to normal cell lines. The observed variations in the binding interactions and cytotoxicity of the complexes were attributed to the nature of the hydrazide moiety of the hydrazones that influences their biological activities.

Graphical abstract: DMSO containing ruthenium(ii) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2014
Accepted
24 Aug 2014
First published
16 Sep 2014

Dalton Trans., 2014,43, 15829-15840

DMSO containing ruthenium(II) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity

M. Alagesan, P. Sathyadevi, P. Krishnamoorthy, N. S. P. Bhuvanesh and N. Dharmaraj, Dalton Trans., 2014, 43, 15829 DOI: 10.1039/C4DT01032A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements