Jump to main content
Jump to site search

Issue 11, 2014

Alkali metal derivatives of an ortho-phenylene diamine

Author affiliations

Abstract

Treatment of the ortho-phenylene diamine C6H4-1,2-{N(H)Tripp}2 (1, PDAH2, Tripp = 2,4,6-triisopropylphenyl) with two equivalents of MR (M = Li, R = Bun; M = Na or K, R = CH2C6H5) afforded the dimetallated alkali metal ortho-phenylene diamide dianion complexes [(PDALi2)(THF)3] (2), [{(PDANa2)(THF)2}2] (3), and [{(PDAK2)(THF)3}2] (4). In contrast, treatment of 2 with two equivalents of rubidium or cesium 2-ethylhexoxide, or treatment of 1 with two equivalents of MR (M = Rb or Cs, R = CH2C6H5) did not afford the anticipated dialkali metal ortho-phenylene diamide dianion derivatives and instead formally afforded the monometallic ortho-diiminosemiquinonate radical anion species [PDAM] (M = Rb, 5; M = Cs, 6). The structure of 2 is monomeric with one lithium coordinated to the two nitrogen centres and the other lithium η4-coordinated to the diazabutadiene portion of the PDA scaffold. Similar structural cores are observed for 3 and 4, except that the larger sodium and potassium ions give dimeric structures linked by multi-hapto interactions from the PDA backbone phenyl ring to an alkali metal centre. Complex 5 was not characterised in the solid state, but the structure of 6 reveals coordination of cesium ions to both PDA amide centres and multi-hapto interactions to a PDA backbone phenyl ring in the next unit to generate a one-dimensional polymer. Complexes 2–6 have been variously characterised by X-ray crystallography, multi-nuclear NMR, FTIR, and EPR spectroscopies, and CHN microanalyses.

Graphical abstract: Alkali metal derivatives of an ortho-phenylene diamine

Supplementary files

Article information


Submitted
23 Sep 2013
Accepted
29 Oct 2013
First published
31 Oct 2013

Dalton Trans., 2014,43, 4351-4360
Article type
Paper

Alkali metal derivatives of an ortho-phenylene diamine

S. Robinson, E. S. Davies, W. Lewis, A. J. Blake and S. T. Liddle, Dalton Trans., 2014, 43, 4351 DOI: 10.1039/C3DT52632A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements