Issue 11, 2014

Structure–activity relationships on metal-oxides: alcohol dehydration

Abstract

The Lewis-acid catalyzed dehydration of simple alcohols on TiO2, ZrO2 and γ-Al2O3 oxide-catalysts has been investigated by combining ab initio theoretical calculations with temperature programmed desorption (TPD) experiments. Both theoretical and experimental results demonstrate that γ-Al2O3 is more active in catalyzing the dehydration reactions than either TiO2 or ZrO2. The dehydration reaction occurs through an E2-elimination mechanism involving either surface O and/or OH groups of the oxides. Based on relationships between the dehydration barriers and key properties of the alcohols and the oxides, a dehydration model was developed that is able to screen the dehydration performance of various alcohols on different metal oxides and provide predictions that were in good agreement with the experimental dehydration barriers. The model accounts for the effect of surface hydration and the existence of surface OH-groups. The basicity of the surface oxygens is shown to be important in eliminating beta hydrogens of the alcohols. This work highlights the importance of surface OH-groups as active centers for the elimination of beta hydrogens of alcohols in Lewis-acid catalyzed dehydration reactions, a result different from the conventional view that surface OH-groups are associated with Brønsted acidity. Most importantly, a novel methodology is introduced that develops structure–activity relationships on oxides for the conversion of biomass derived molecules to chemicals.

Graphical abstract: Structure–activity relationships on metal-oxides: alcohol dehydration

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2014
Accepted
11 Jun 2014
First published
11 Jun 2014

Catal. Sci. Technol., 2014,4, 3861-3869

Structure–activity relationships on metal-oxides: alcohol dehydration

P. Kostestkyy, J. Yu, R. J. Gorte and G. Mpourmpakis, Catal. Sci. Technol., 2014, 4, 3861 DOI: 10.1039/C4CY00632A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements