Issue 9, 2014

Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer–Tropsch synthesis without further reduction

Abstract

Ru promoted Co/SiO2 Fischer–Tropsch synthesis (FTS) catalysts with high reduction levels were synthesized through an autocombustion method using citric acid (CA) as a reductant and nitrate ions as oxidants. The as-synthesized catalysts were used directly in FTS reaction without further reduction. The effects of the ruthenium promoter, citric acid contents and reductant types on the catalyst structures and FTS performance were systematically studied. Results indicated that the introduction of a small amount of Ru (1 wt%) improved the reduction and dispersion of cobalt during the autocombustion process, and significantly enhanced the FTS activity. The CO conversion of the catalyst increased rapidly from 0.8 to 41.4% after Ru promotion. The citric acid contents (molar ratio of citric acid to nitrates: CA/N) in the precursor also played an important role in controlling the structures and FTS performance of the catalysts. With the increase of CA/N, the metal reduction level increased and the Co crystalline size decreased but the activity of the catalyst first increased and then decreased with gradually increasing CA/N. An excessive amount of the reductant could result in more residual carbon species and decrease the activity of the catalyst. For different types of reductants (at the same molar ratio of reductants to nitrates), the catalyst prepared by citric acid exhibited the highest activity whereas the catalyst synthesized by oxalic acid showed the lowest methane selectivity. The Ru promoted cobalt catalysts prepared by the autocombustion method, which omits the complex and high energy consumption reduction process, can be used directly for highly efficient FTS and thus will be more promising in the future.

Graphical abstract: Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer–Tropsch synthesis without further reduction

Article information

Article type
Paper
Submitted
31 Mar 2014
Accepted
17 May 2014
First published
19 May 2014

Catal. Sci. Technol., 2014,4, 3099-3107

Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer–Tropsch synthesis without further reduction

R. Phienluphon, L. Shi, J. Sun, W. Niu, P. Lu, P. Zhu, T. Vitidsant, Y. Yoneyama, Q. Chen and N. Tsubaki, Catal. Sci. Technol., 2014, 4, 3099 DOI: 10.1039/C4CY00402G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements