Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr) †
Abstract
The first immobilization of the trivacant Keggin-type polyoxometalate ([A-PW9O34]9−, PW9) to prepare a novel heterogeneous oxidative catalyst is here reported. PW9 was incorporated into the cavities of the chromium terephthalate metal–organic framework MIL-101(Cr). Characterization of the composite PW9@MIL-101 by powder X-ray diffraction, SEM-EDX, FT-IR, FT-Raman spectroscopy, N2 adsorption–desorption isotherms and 31P solid-state NMR confirmed that the structures of MIL-101 and the polyoxometalate anion were retained after immobilization. The composite PW9@MIL-101 revealed versatility as a heterogeneous catalyst to oxidize efficiently monoterpenes as well as to reach a complete desulfurization of a model oil containing the most refractory sulfur compounds in fuel, using in both systems acetonitrile as the solvent and H2O2 as the oxidant. Complete conversion of geraniol to 2,3-epoxygeraniol was achieved after the first 30 min at room temperature, while the total desulfurization of the model oil containing 1707 ppm of sulfur was attained after 2 h. In both systems the catalyst was recyclable for various cycles without a significant loss of activity. The stability and heterogeneity of the catalyst were confirmed by several techniques and by leaching tests.