Three-dimensional nano-biointerface as a new platform for guiding cell fate
Abstract
Three-dimensional nano-biointerface has been emerging as an important topic for chemistry, nanotechnology, and life sciences in recent years. Understanding the exchanges of materials, signals, and energy at biological interfaces has inspired and helped the serial design of three-dimensional nano-biointerfaces. The intimate interactions between cells and nanostructures bring many novel properties, making three-dimensional nano-biointerfaces a powerful platform to guide cell fate in a controllable and accurate way. These advantages and capabilities endow three-dimensional nano-biointerfaces with an indispensable role in developing advanced biological science and technology. This tutorial review is mainly focused on the recent progress of three-dimensional nano-biointerfaces and highlights the new explorations and unique phenomena of three-dimensional nano-biointerfaces for cell-related fundamental studies and biomedical applications. Some basic bio-inspired principles for the design and creation of three-dimensional nano-biointerfaces are also delivered in this review. Current and further challenges of three-dimensional nano-biointerfaces are finally addressed and proposed.