Jump to main content
Jump to site search

Issue 33, 2014
Previous Article Next Article

The effect of a detonation nanodiamond coating on the thermal decomposition properties of RDX explosives

Author affiliations

Abstract

A well-dispersed and uniformly shaped detonation nanodiamond (DND) was produced and coated over micron scale RDX in various amounts to form four kinds of DND coating composites (NDRs). In order to confirm the optimal coating amount and its effect on the thermal properties, the thermal decomposition and kinetics were studied by DSC, TG and DPTA techniques. The critical temperature of thermal explosion (Tb) and the self accelerating decomposition temperature (TSADT) both exhibit an interesting volcano-shaped changing trend and rank in an increasing order of NDR4 < NDR1 < RDX < NDR3 < NDR2. This indicates that the DND coating amount, ranging from 1/7 to 1/5, provides NDRs with better thermal safety than RDX. The thermolytic kinetic parameters (Ea and A) and activation thermodynamic parameters (ΔS, ΔH and ΔG) are sorted in the following order: NDR1 < NDR4 < NDR2 < NDR3. The gas emission and reaction rate constant of the initial thermal decomposition have the same order. The results show that the DND coating could improve the reactivity of the NDRs and the effect is proportional to the coating amount. However, excessive coating that is more than 1/3 conversely hinders decomposition and gas diffusion, like a layer of protective shell. The isoconversional activation energy (Ea) varies with the conversion extent (α) at the initial stage of α = 0.1–0.5, which indicates that the thermal decomposition of the NDRs is a multi-step process including the secondary reaction or catalytic reaction. However, the Ea values are almost independent of α when α = 0.6–0.9, with the mean values in an increasing order of NDR1 < NDR4 < NDR2 < NDR3.

Graphical abstract: The effect of a detonation nanodiamond coating on the thermal decomposition properties of RDX explosives

Back to tab navigation

Publication details

The article was received on 22 May 2014, accepted on 25 Jun 2014 and first published on 26 Jun 2014


Article type: Paper
DOI: 10.1039/C4CP02237H
Author version
available:
Download author version (PDF)
Citation: Phys. Chem. Chem. Phys., 2014,16, 17648-17657

  •   Request permissions

    The effect of a detonation nanodiamond coating on the thermal decomposition properties of RDX explosives

    Y. Tong, R. Liu and T. Zhang, Phys. Chem. Chem. Phys., 2014, 16, 17648
    DOI: 10.1039/C4CP02237H

Search articles by author

Spotlight

Advertisements