Issue 34, 2014

Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode

Abstract

Several first-principles calculations based on density functional theory have been carried out looking at the key issues of a magnesium battery with a V2O5 cathode. This kind of magnesium battery was reported by D. Aurbach's group in 2013. Our theoretical studies provide explanations for the experimental findings such as higher voltage, slow ion diffusivity and the decrease of the crystallinity. The calculated open circuit voltage of a magnesium battery with a V2O5 cathode is 3.06 V, which is 0.22 V higher than a lithium battery with the same cathode. Electronic band structure calculations suggest that higher electronic conductivity must be expected in a magnesium battery. Elastic constants are obtained, which give information on the stability of the magnesiated cathode. Furthermore, we have also calculated the diffusion barriers of Li and Mg ions in the cathode using the nudged elastic band method. The hopping barrier of Mg ions is 1.26 eV, which is much higher than that of Li ions (0.35 eV). The obtained minimum energy paths show the different hopping processes in the lithium and magnesium batteries, which can explain the phenomenon of slow diffusion in experiments. The possible transition pathway between the α and δ phases is analyzed for the first time, which gives an explanation for the reversibility of Mg ions in the V2O5 cathode.

Graphical abstract: Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode

Article information

Article type
Paper
Submitted
22 May 2014
Accepted
11 Jul 2014
First published
15 Jul 2014

Phys. Chem. Chem. Phys., 2014,16, 18578-18585

Author version available

Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode

B. Zhou, H. Shi, R. Cao, X. Zhang and Z. Jiang, Phys. Chem. Chem. Phys., 2014, 16, 18578 DOI: 10.1039/C4CP02230K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements