Issue 31, 2014

Electronic and optical properties of silicon based porous sheets

Abstract

Si based sheets have attracted tremendous attention due to their compatibility with the well-developed Si-based semiconductor industry. On the basis of state-of-the-art theoretical calculations, we systematically study the stability, electronic and optical properties of Si based porous sheets including g-Si4N3, g-Si3N4, g-Si3N3 and g-Si3P3. We find that the g-Si3N3 and g-Si3P3 sheets are thermally stable, while the g-Si4N3 and g-Si3N4 are unstable. Different from the silicene-like sheets of SiN and Si3N which are nonplanar and metallic, both the porous g-Si3N3 and g-Si3P3 sheets are planar and nonmetallic, and the former is an indirect band gap semiconductor with a band gap of 3.50 eV, while the latter is a direct band gap semiconductor with a gap of 1.93 eV. Analysis of the optical absorption spectrum reveals that the g-Si3P3 sheet may have applications in solar absorbers owing to its narrow direct band gap and wide range optical absorption in the visible light spectrum.

Graphical abstract: Electronic and optical properties of silicon based porous sheets

Article information

Article type
Paper
Submitted
06 Apr 2014
Accepted
12 Jun 2014
First published
13 Jun 2014

Phys. Chem. Chem. Phys., 2014,16, 16832-16836

Electronic and optical properties of silicon based porous sheets

Y. Guo, S. Zhang and Q. Wang, Phys. Chem. Chem. Phys., 2014, 16, 16832 DOI: 10.1039/C4CP01491J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements