Issue 23, 2014

The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 single ion magnet endohedral fullerene

Abstract

Considering the DySc2N@C80 system as a prototype for Single Ion Magnets (SIMs) based on endohedral fullerenes, we present methodological advances and state-of-the art computations analysing the electronic structure and its relationship with the magnetic properties due to the Dy(III) ion. The results of the quantum chemical calculations are quantitatively decrypted in the framework of ligand field (LF) theory, extracting the full parametric sets and interpreting in heuristic key the outcome. An important result is the characterization of the magnetic anisotropy in the ground and excited states, drawing the polar maps of the state-specific magnetization functions that offer a clear visual image of the easy axes and account for the pattern of response to perturbations by the magnetic field applied from different space directions. The state-specific magnetization functions are derivatives with respect to the magnetic field, taken for a given eigenvalue of the computed spectrum. The methodology is based on the exploitation of the data from the black box of the ab initio spin–orbit (SO) calculations. The ground state is characterized by the Jz = ±15/2 quantum numbers with easy axis along the Dy–N bond. The implemented dependence on the magnetic field allowed the first-principles simulation of the magnetic properties. The computational approach to the properties of endohedral fullerenes is an important goal, helping to complement the scarcity of the experimental data on such systems, determined by the limited amount of samples.

Graphical abstract: The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 single ion magnet endohedral fullerene

Article information

Article type
Paper
Submitted
05 Mar 2014
Accepted
02 Apr 2014
First published
07 Apr 2014

Phys. Chem. Chem. Phys., 2014,16, 11337-11348

Author version available

The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 single ion magnet endohedral fullerene

F. Cimpoesu, N. Dragoe, H. Ramanantoanina, W. Urland and C. Daul, Phys. Chem. Chem. Phys., 2014, 16, 11337 DOI: 10.1039/C4CP00953C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements