Issue 22, 2014

Molecular structure and stability of dissolved lithium polysulfide species

Abstract

The ability to predict the solubility and stability of lithium polysulfide is vital in realizing longer lasting lithium–sulfur batteries. Herein we report combined experimental and computational analyses to understand the dissolution mechanism of lithium polysulfide species in an aprotic solvent medium. Multinuclear NMR, variable temperature ESR and sulfur K-edge XAS analyses reveal that the lithium exchange between polysulfide species and solvent molecules constitutes the first step in the dissolution process. Lithium exchange leads to de-lithiated polysulfide ions (Sn2−) which subsequently form highly reactive free radicals through dissociation reaction (Sn2− → 2Sn/2˙). The energy required for the dissociation and possible dimer formation reactions of the polysulfide species is analyzed using density functional theory (DFT) based calculations. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility.

Graphical abstract: Molecular structure and stability of dissolved lithium polysulfide species

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2014
Accepted
03 Mar 2014
First published
24 Mar 2014

Phys. Chem. Chem. Phys., 2014,16, 10923-10932

Author version available

Molecular structure and stability of dissolved lithium polysulfide species

M. Vijayakumar, N. Govind, E. Walter, S. D. Burton, A. Shukla, A. Devaraj, J. Xiao, J. Liu, C. Wang, A. Karim and S. Thevuthasan, Phys. Chem. Chem. Phys., 2014, 16, 10923 DOI: 10.1039/C4CP00889H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements