Issue 28, 2014

Unusual electronic properties and transmission in hexagonal SiB monolayers

Abstract

After the success of graphene, several two-dimensional (2D) layers have been proposed and investigated both theoretically and experimentally in order to evaluate their structural stability and possible applications of these unusual materials in electronics. Except for graphene, only silicon and germanium were predicted to form semi-metallic honeycomb monolayers, while most of the binary graphene-like compounds are all semiconductors. These predictions have been corroborated for several 2D structures experimentally synthesized. Considering the possibility of finding other candidates in this realm, exhibiting exceptional electron mobility, we have explored low-dimensional silicon–boron compounds containing planar sp2-bonding silicon atoms, through first-principles density-functional theory calculations. We have demonstrated that the so-called h-SiB sheet, which is a structural analogue of 2D honeycomb binary compounds, exhibits good structural stability, compared to the structure of silicene, for example, and predicted that this structure is also able to roll up into thermally stable single-walled silicon–boron nanotubes. The h-SiB sheet exhibits a delocalized charge density like in graphene, but the partially filled π band and two highest occupied σ bands are above the Fermi level, leading to the metallic behaviour of this SiB sheet. In this sense, we perform first-principles electron transport calculations, based on the nonequilibrium Green's function formalism, which has demonstrated that h-SiB exhibits higher transmission around the Fermi energy than the transmission in graphene. Our results indicate the unusual conductivity of this new material and open up new possibilities for the realization of metallic graphene-like systems for electronic transport in low dimensions.

Graphical abstract: Unusual electronic properties and transmission in hexagonal SiB monolayers

Article information

Article type
Paper
Submitted
11 Dec 2013
Accepted
14 Feb 2014
First published
14 Feb 2014

Phys. Chem. Chem. Phys., 2014,16, 14473-14478

Unusual electronic properties and transmission in hexagonal SiB monolayers

A. Hansson, F. D. B. Mota and R. Rivelino, Phys. Chem. Chem. Phys., 2014, 16, 14473 DOI: 10.1039/C3CP55235G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements