Issue 3, 2014

γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis

Abstract

Pulsed laser ablation has proved its reliability for the synthesis of nano-particles and nano-structured materials, including metastable phases and complex stoichiometries. The possible nucleation of the nanoparticles in the gas phase and their growth has been little investigated, due to the difficulty of following the gas composition as well as the thermodynamic parameters. We show that such information can be obtained from the optically active plasma during its short lifetime, only a few microseconds for each laser pulse, as a result of a quick quenching due to the liquid environment. For this purpose, we follow the laser ablation of an α-Al2O3 target (corindon) in water, which leads to the synthesis of nanoparticles of γ-Al2O3. The AlO blue-green emission and the AlI 2P02S doublet emission provide the electron density, the density ratio between the Al atoms and AlO molecules, and the rotational and vibrational temperatures of the AlO molecules. These diagnostic considerations are discussed in the framework of theoretical studies from the literature (density functional theory). We have found that starting from a hot atomized gas, the nucleation cannot occur in the first microseconds. We also raise the question of the influence of water on the control of the stoichiometry.

Graphical abstract: γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis

Article information

Article type
Paper
Submitted
04 Sep 2013
Accepted
01 Nov 2013
First published
05 Nov 2013

Phys. Chem. Chem. Phys., 2014,16, 963-973

γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis

J. Lam, D. Amans, F. Chaput, M. Diouf, G. Ledoux, N. Mary, K. Masenelli-Varlot, V. Motto-Ros and C. Dujardin, Phys. Chem. Chem. Phys., 2014, 16, 963 DOI: 10.1039/C3CP53748J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements