Issue 14, 2014

The controlled transition-metal doping of SnO2 nanoparticles with tunable luminescence

Abstract

SnO2 nanoparticles doped with transition metals (V, Cr, Mn) have been synthesized by both the hydrothermal method (HDT) in a basic media and the liquid mixed method (LQM) based on the Pechini method. Nanocrystalline particles obtained via a liquid mixed technique show a well-defined chemical composition and an average size of 6 nm, with a high degree of both crystallinity and chemical homogeneity. Nanoparticles prepared via a hydrothermal method exhibit a high dispersion in size as well as agglomeration effects. As the LQM demonstrates advantages with respect to the HDT, a more detailed investigation has been carried out on the SnO2 nanoparticles doped with V, Cr and Mn grown by this method. The microstructure of the materials was elucidated by means of X-ray Diffraction (XRD), Selected-Area Electron Diffraction (SAED), and High-Resolution Transmission Electron Microscopy (HRTEM). Luminescence from undoped and doped SnO2 nanoparticles was characterized by cathodoluminescence (CL). The luminescence studies demonstrate a strong dependence of CL signals with transition metal doping, thus inducing red, green or orange emissions when doping with Cr, V or Mn respectively.

Graphical abstract: The controlled transition-metal doping of SnO2 nanoparticles with tunable luminescence

Article information

Article type
Paper
Submitted
28 Oct 2013
Accepted
08 Jan 2014
First published
26 Feb 2014

CrystEngComm, 2014,16, 2969-2976

The controlled transition-metal doping of SnO2 nanoparticles with tunable luminescence

M. A. Peche-Herrero, D. Maestre, J. Ramírez-Castellanos, A. Cremades, J. Piqueras and J. M. González-Calbet, CrystEngComm, 2014, 16, 2969 DOI: 10.1039/C3CE42188K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements