Jump to main content
Jump to site search

Issue 8, 2014
Previous Article Next Article

Eutectics as improved pharmaceutical materials: design, properties and characterization

Author affiliations

Abstract

Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.

Graphical abstract: Eutectics as improved pharmaceutical materials: design, properties and characterization

Back to tab navigation

Supplementary files

Article information


Submitted
01 Oct 2013
Accepted
06 Nov 2013
First published
07 Nov 2013

Chem. Commun., 2014,50, 906-923
Article type
Feature Article
Author version available

Eutectics as improved pharmaceutical materials: design, properties and characterization

S. Cherukuvada and A. Nangia, Chem. Commun., 2014, 50, 906
DOI: 10.1039/C3CC47521B

Social activity

Search articles by author

Spotlight

Advertisements