Jump to main content
Jump to site search

Issue 8, 2014
Previous Article Next Article

Identification of pathogenic fungi with an optoelectronic nose

Author affiliations


Human fungal infections have gained recent notoriety following contamination of pharmaceuticals in the compounding process. Such invasive infections are a more serious global problem, especially for immunocompromised patients. While superficial fungal infections are common and generally curable, invasive fungal infections are often life-threatening and much harder to diagnose and treat. Despite the increasing awareness of the situation's severity, currently available fungal diagnostic methods cannot always meet diagnostic needs, especially for invasive fungal infections. Volatile organic compounds produced by fungi provide an alternative diagnostic approach for identification of fungal strains. We report here an optoelectronic nose based on a disposable colorimetric sensor array capable of rapid differentiation and identification of pathogenic fungi based on their metabolic profiles of emitted volatiles. The sensor arrays were tested with 12 human pathogenic fungal strains grown on standard agar medium. Array responses were monitored with an ordinary flatbed scanner. All fungal strains gave unique composite responses within 3 hours and were correctly clustered using hierarchical cluster analysis. A standard jackknifed linear discriminant analysis gave a classification accuracy of 94% for 155 trials. Tensor discriminant analysis, which takes better advantage of the high dimensionality of the sensor array data, gave a classification accuracy of 98.1%. The sensor array is also able to observe metabolic changes in growth patterns upon the addition of fungicides, and this provides a facile screening tool for determining fungicide efficacy for various fungal strains in real time.

Graphical abstract: Identification of pathogenic fungi with an optoelectronic nose

Back to tab navigation

Supplementary files

Article information

12 Nov 2013
09 Feb 2014
First published
26 Feb 2014

Analyst, 2014,139, 1922-1928
Article type
Author version available

Identification of pathogenic fungi with an optoelectronic nose

Y. Zhang, J. R. Askim, W. Zhong, P. Orlean and K. S. Suslick, Analyst, 2014, 139, 1922
DOI: 10.1039/C3AN02112B

Social activity

Search articles by author