Issue 23, 2014

Impact of pulse duration on localized single-cell nano-electroporation

Abstract

We introduce a localized single-cell membrane nano-electroporation with controllable sequential molecular delivery by millisecond to nanosecond electrical pulses. An intense electrical field was generated by a pair of transparent indium tin oxide (ITO)-based nano-electrodes, which was confined to a narrow region of the single-cell membrane surface near the nano-electrode edges (approximately 2 μm × 50 nm area), whereas the remaining area of the membrane was unaffected. Moreover, a 250 nm SiO2 passivation layer on top of the nano-electrode reduced not only the thermal effect on the cell membrane surface, but it also avoided the generation of ions during the experiment, resulting in the reduction of cell toxicity and a significant enhancement of cell viability. Our approach precisely delivers dyes, Quantum Dots (QDs) and plasmids, through a localized region of single HeLa cells by considerably enhanced electrophoresis and diffusion effects with different duration of the pulsing process. The smaller molecules took less time to deliver into a single cell with a single pulse, whereas larger biomolecules took longer time even for multiple numbers of long lasting pulses. The system not only generates sequential well-controlled nano-pores allowing for the rapid recovery of cell membranes, but it also provides spatial, temporal and qualitative dosage control to deliver biomolecules into localized single-cell levels, which can be potentially beneficial for single cell studies and therapeutic applications.

Graphical abstract: Impact of pulse duration on localized single-cell nano-electroporation

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2014
Accepted
20 Sep 2014
First published
16 Oct 2014

Analyst, 2014,139, 6249-6258

Impact of pulse duration on localized single-cell nano-electroporation

T. S. Santra, H. Chang, P. Wang and F. Tseng, Analyst, 2014, 139, 6249 DOI: 10.1039/C4AN01050G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements