Jump to main content
Jump to site search

Issue 21, 2014
Previous Article Next Article

Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

Author affiliations

Abstract

An improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4]+, which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6–8585 ng mL−1 for CoQ10H2 and 8.6–4292 ng mL−1 for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL−1 and limits of quantification (LOQs) were 15.0 and 5.0 ng mL−1 for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.

Graphical abstract: Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

Back to tab navigation

Supplementary files

Article information


Submitted
29 Apr 2014
Accepted
31 Jul 2014
First published
31 Jul 2014

Analyst, 2014,139, 5600-5604
Article type
Paper

Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

Z. Tang, S. Li, X. Guan, P. Schmitt-Kopplin, S. Lin and Z. Cai, Analyst, 2014, 139, 5600
DOI: 10.1039/C4AN00760C

Social activity

Search articles by author

Spotlight

Advertisements