Issue 15, 2014

Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring

Abstract

There are over 450 000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these sites stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors.

Graphical abstract: Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring

Article information

Article type
Paper
Submitted
24 Apr 2014
Accepted
22 May 2014
First published
22 May 2014

Analyst, 2014,139, 3770-3780

Author version available

Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring

S. V. Patel and W. K. Tolley, Analyst, 2014, 139, 3770 DOI: 10.1039/C4AN00736K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements