Issue 8, 2014

A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly

Abstract

A novel capillary electrophoresis (CE)-based immobilized enzyme reactor (IMER) using graphene oxide (GO) as a support was developed by using a simple and reliable immobilization procedure based on layer by layer electrostatic assembly. Using trypsin as a model enzyme, the performance of the fabricated CE-based IMERs was evaluated. Various conditions, including trypsin concentration, trypsin coating time, number of trypsin layers and buffer pH, were investigated and optimized. The Michaelis constant Km (0.24 ± 0.02 mM) and the maximum velocity Vmax (0.32 ± 0.04 mM s−1) were determined using the CE-based IMERs, and the values are consistent with those obtained using free trypsin, indicating that enzyme immobilized via the proposed approach does not cause a significant structural change of the enzyme or any reduction of enzyme activity. The presented CE-based IMERs exhibit excellent reproducibility with RSD less than 2.8% over 20 runs, and still remain 79.5% of the initial activity after five days with more than 100 runs. Using the proposed CE-based IMERs, the digestion of angiotensin was completed within 3 min, while quite a number of trypstic peptides were observed for BSA on-line digestion with an incubation time of 30 min. As identified by MS analysis, the online digestion products of BSA using the present CE-based IMER are comparable with those obtained using free trypsin digestion for 12 h incubation. It is indicated that the present immobilization strategy using GO as a support is reliable and practicable for accurate on-line analysis and characterization of peptides and proteins.

Graphical abstract: A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly

Article information

Article type
Paper
Submitted
04 Dec 2013
Accepted
24 Jan 2014
First published
24 Jan 2014

Analyst, 2014,139, 1973-1979

Author version available

A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly

Z. Yin, W. Zhao, M. Tian, Q. Zhang, L. Guo and L. Yang, Analyst, 2014, 139, 1973 DOI: 10.1039/C3AN02241B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements