Issue 45, 2013

The band energy diagram of PCBM–DH6T bulk heterojunction solar cells: synchrotron-induced photoelectron spectroscopy on solution processed DH6T:PCBM blends and in situ prepared PCBM/DH6T interfaces

Abstract

Applying high resolution synchrotron-induced photoelectron spectroscopy (SXPS), the electronic properties of a bulk heterojunction (BHJ) model solar cell consisting of phenyl-C61-butyric-acid-methyl-ester (PCBM) as an acceptor and α,ω-dihexylsexithiophene (DH6T) as a donor are investigated. This donor material can be prepared via UHV thermal evaporation and solution based techniques. Samples prepared by either technique show identical core levels and valence band spectra proving the equivalency of the resulting electronic properties. The formation of the PCBM/DH6T interface is studied in an in situ experiment based on stepwise evaporation of DH6T onto PCBM. The deposition of donor–acceptor mixed solutions leads to phase separated bulk heterojunction layers with a donor cap. The combination of SXPS measurements on a series of ex situ prepared blend films from solutions with varying donor–acceptor concentrations with in situ interface formation experiments enables deriving the band diagram across the bulk heterojunction and into the donor cap. Band bending of up to 0.3 eV is induced in the DH6T cap layer and a dipole of 0.26 eV forms at the PCBM:DH6T bulk heterojunction. The direction of the band bending leads to hole accumulation on the donor side of the interface, which may increase recombination with transferred electrons in the acceptor and thereby negatively affects the device performance.

Graphical abstract: The band energy diagram of PCBM–DH6T bulk heterojunction solar cells: synchrotron-induced photoelectron spectroscopy on solution processed DH6T:PCBM blends and in situ prepared PCBM/DH6T interfaces

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2013
Accepted
27 Sep 2013
First published
23 Oct 2013

J. Mater. Chem. C, 2013,1, 7635-7642

The band energy diagram of PCBM–DH6T bulk heterojunction solar cells: synchrotron-induced photoelectron spectroscopy on solution processed DH6T:PCBM blends and in situ prepared PCBM/DH6T interfaces

J. Maibach, E. Mankel, T. Mayer and W. Jaegermann, J. Mater. Chem. C, 2013, 1, 7635 DOI: 10.1039/C3TC31745E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements