Issue 24, 2013

Photophysical properties of [Ir(tpy)2]3+-doped silica nanoparticles and synthesis of a colour-tunable material based on an Ir(core)–Eu(shell) derivative

Abstract

In this study, we report the synthesis and characterization of phosphorescent silica nanoparticles doped with the blue-greenish emitting Ir-tpy complex [Ir(tpy)2]X3 (tpy = 2,2′:6′,2′′-terpyridine; X = PF6 or NO3). Depending on the type of counterion and the solubility of the complex, three different kinds of Ir(tpy)-doped silica nanoparticles were prepared by the Stöber, water-in-oil and direct micelle synthetic approaches. The materials prepared through the Stöber and the water-in-oil approaches showed enhanced photochemical stability and higher luminescence efficiency compared to the free Ir-tpy complex. In these cases, the silica matrix hampers the diffusion of O2 and restrains the mobility of the complexes resulting in a decrease of the vibration relaxation and restraining the nonradiative decay. Conversely, for the material prepared by the direct micelle method, in which the structure of silica shows some degree of mesoporosity, the luminescence properties of the Ir-tpy complex remained almost unchanged after silica encapsulation. Additionally, the nanoparticles prepared by the Stöber method were chosen to functionalize their surface with a red-emitting Eu(hfac)3-alkoxysilane derivative leading to multicoloured luminescent silica nanoparticles in which the colour of the emission could be tuned by changing the excitation wavelength and where an Ir → Eu energy transfer was evidenced.

Graphical abstract: Photophysical properties of [Ir(tpy)2]3+-doped silica nanoparticles and synthesis of a colour-tunable material based on an Ir(core)–Eu(shell) derivative

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2013
Accepted
16 Apr 2013
First published
16 Apr 2013

J. Mater. Chem. C, 2013,1, 3808-3815

Photophysical properties of [Ir(tpy)2]3+-doped silica nanoparticles and synthesis of a colour-tunable material based on an Ir(core)–Eu(shell) derivative

S. Titos-Padilla, E. Colacio, S. J. A. Pope, J. J. Delgado, M. Melgosa and J. M. Herrera, J. Mater. Chem. C, 2013, 1, 3808 DOI: 10.1039/C3TC30466C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements