Issue 20, 2013

Hybrid inorganic–organic composite nanoparticles from crosslinkable polyfluorenes

Abstract

Polyfluorenes with pendant alkoxysilyl groups have been used to prepare inorganic–organic composite nanoparticles (diameter = 80–220 nm) in which the conjugated polymer is dispersed within a silica matrix. Preparation of these nanoparticles is achieved by simultaneous nanoprecipitation of the conjugated polymer and hydrolysis/crosslinking of the alkoxysilyl groups under basic conditions. The composition of the nanocomposites is controlled by addition of an alkoxysilane monomer, tetramethylorthosilicate. The hybrid nanoparticles form highly stable dispersions in water and buffer (pH 9.2). The size of the nanoparticles can be tuned by varying the amount of the alkoxysilane monomer added during the nanoprecipitation process. Increasing the relative amount of alkoxysilane monomer also increases the proportion of polyfluorene chains that adopt the higher energy β-phase conformation within the resultant nanoparticles. Nanoparticles with the highest silica content were found to have increased photoluminescence quantum yields. This work provides a controllable method for optimisation of the photophysical properties of light-emitting conjugated polymer nanoparticles via a simple aqueous processing technique.

Graphical abstract: Hybrid inorganic–organic composite nanoparticles from crosslinkable polyfluorenes

Article information

Article type
Paper
Submitted
08 Feb 2013
Accepted
04 Apr 2013
First published
04 Apr 2013

J. Mater. Chem. C, 2013,1, 3297-3304

Hybrid inorganic–organic composite nanoparticles from crosslinkable polyfluorenes

J. M. Behrendt, A. B. Foster, M. C. McCairn, H. Willcock, R. K. O'Reilly and M. L. Turner, J. Mater. Chem. C, 2013, 1, 3297 DOI: 10.1039/C3TC30266K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements