Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2013
Previous Article Next Article

Thiol-containing polymeric embedding materials for nanoskiving

Author affiliations

Abstract

This paper describes the characterization of new embedding resins for nanoskiving (ultramicrotomy) that contain thiols. Nanoskiving is a technique to produce nanoscale structures using an ultramicrotome to section thin films of materials (e.g., gold) embedded in polymer. Epoxies are used typically as embedding resins for microtomy. Epoxies, however, do not adhere well to gold or other smooth metallic structures that are used commonly for nanoskiving. Thiol–ene and thiol–epoxy polymers provide improved adhesion to gold due to the thiol functional group. In addition, the thiol–ene polymers can be prepared within minutes using photopolymerization, which allows for rapid prototyping. Two commercial thiol-containing adhesives were evaluated as resins in addition to several formulations of commercially available monomers. The important physical and mechanical properties for microtomy of these unconventional embedding resins were characterized and the properties were compared to commercial epoxy resins. Gold nanowires were fabricated using nanoskiving of gold films embedded in these unconventional resins. These studies show that a 3 : 4 mixture of thiol (pentaerythritol tetra(3-mercaptopropionate)) and ene (triallyl-1,3,5-triazine-2,4,6-trione) works very well as a resin for nanoskiving and provides improved adhesion and reduced preparation time relative to epoxies.

Graphical abstract: Thiol-containing polymeric embedding materials for nanoskiving

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Aug 2012, accepted on 18 Oct 2012 and first published on 25 Oct 2012


Article type: Paper
DOI: 10.1039/C2TC00030J
Citation: J. Mater. Chem. C, 2013,1, 121-130

  •   Request permissions

    Thiol-containing polymeric embedding materials for nanoskiving

    R. L. Mays, P. Pourhossein, D. Savithri, J. Genzer, R. C. Chiechi and M. D. Dickey, J. Mater. Chem. C, 2013, 1, 121
    DOI: 10.1039/C2TC00030J

Search articles by author

Spotlight

Advertisements