Issue 34, 2013

Chitin nanofiber micropatterned flexible substrates for tissue engineering

Abstract

Engineered tissues require enhanced organization of cells and the extracellular matrix (ECM) for proper function. To promote cell organization, substrates with controlled micro- and nanopatterns have been developed as supports for cell growth, and to induce cellular elongation and orientation via contact guidance. Micropatterned ultra-thin biodegradable substrates are desirable for implantation in the host tissue. These substrates, however, need to be mechanically robust to provide substantial support for the generation of new tissues, to be easily retrievable, and to maintain proper handling characteristics. Here, we introduce ultra-thin (<10 μm), self-assembled chitin nanofiber substrates micropatterned by replica molding for engineering cell sheets. These substrates are biodegradable, mechanically strong, yet flexible, and can be easily manipulated into the desired shape. As a proof-of-concept, fibroblast cell attachment, proliferation, elongation, and alignment were studied on the developed substrates with different pattern dimensions. On the optimized substrates, the majority of the cells aligned (<10°) along the major axis of micropatterned features. With the ease of fabrication and mechanical robustness, the substrates presented herein can be utilized as a versatile system for the engineering and delivery of ordered tissue in applications such as myocardial repair.

Graphical abstract: Chitin nanofiber micropatterned flexible substrates for tissue engineering

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2013
Accepted
08 Jul 2013
First published
08 Jul 2013

J. Mater. Chem. B, 2013,1, 4217-4224

Chitin nanofiber micropatterned flexible substrates for tissue engineering

P. Hassanzadeh, M. Kharaziha, M. Nikkhah, S. R. Shin, J. Jin, S. He, W. Sun, C. Zhong, M. R. Dokmeci, A. Khademhosseini and M. Rolandi, J. Mater. Chem. B, 2013, 1, 4217 DOI: 10.1039/C3TB20782J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements