Issue 26, 2013

Injectable in situ-forming hydrogel for cartilage tissue engineering

Abstract

Methoxy polyethylene glycol–poly(ε-caprolactone) (MPEG–PCL; MP) diblock copolymers undergo a solution-to-gel phase transition at body temperature and serve as ideal biomaterials for drug delivery and tissue engineering. Here, we examined the potential use of a chondrocyte-loaded MP solution as an injectable, in situ-forming hydrogel for cartilage regeneration. The chondrocyte-MP solution underwent a temperature-dependent solution-to-gel phase transition in vitro, as shown by an increase in viscosity from 1 cP at 20–30 °C to 1.6 × 105 cP at 37 °C. The chondrocytes readily attached to and proliferated on the MP hydrogel in vitro. The chondrocyte-MP solution transitioned to a hydrogel immediately after subcutaneous injection into mice, and formed an interconnected pore structure required to support the growth, proliferation, and differentiation of the chondrocytes. The chondrocyte-MP hydrogels formed cartilage in vivo, as shown by the histological and immunohistochemical staining of glycosaminoglycans, proteoglycans, and type II collagen, the major components of cartilage. Cartilage formation increased with hydrogel implantation time, and the expression of glycosaminoglycans, and type II collagen reached maximal levels at 6 weeks post-implantation. Collectively, these data suggest that in situ-forming chondrocyte-MP hydrogels have potential as non-invasive alternatives for tissue-engineered cartilage formation.

Graphical abstract: Injectable in situ-forming hydrogel for cartilage tissue engineering

Article information

Article type
Paper
Submitted
24 Jan 2013
Accepted
29 Apr 2013
First published
29 Apr 2013

J. Mater. Chem. B, 2013,1, 3314-3321

Injectable in situ-forming hydrogel for cartilage tissue engineering

J. S. Kwon, S. M. Yoon, D. Y. Kwon, D. Y. Kim, G. Z. Tai, L. M. Jin, B. Song, B. Lee, J. H. Kim, D. K. Han, B. H. Min and M. S. Kim, J. Mater. Chem. B, 2013, 1, 3314 DOI: 10.1039/C3TB20105H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements