Issue 42, 2013

A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles

Abstract

Nitrogen-enriched mesoporous carbons (NMCs) were decorated with ultrafine La2O3 nanoparticles via a simple wet impregnation method. The resulting composites with well developed mesoporous structures, high nitrogen content and uniform dispersions of La2O3 nanoparticles served as scaffolds to house sulfur for high rate lithium–sulfur batteries. Apart from their on-site trapping of polysulfides, the La2O3 nanoparticles decorated on the mesoporous carbon framework were also found to have a strong catalytic effect on sulfur reduction, offering high discharge voltages and fast electrochemical reaction kinetics. Combining the multiple effects of the well developed mesopores, nitrogen doping and La2O3 nanoparticles, the resulting ternary NMC/La2O3/S nanocomposites can deliver an initial capacity of 1043 mA h g−1 at 1 C, which remains at 799 mA h g−1 after 100 cycles. Moreover, they still maintain ultra-high rate capacities of 579 and 475 mA h g−1 at 3 C and 5 C, respectively, after 100 cycles. These encouraging results suggest that other metal oxides with suitable adsorption and catalytic abilities can be widely applied to decorate carbon frameworks for use in high rate lithium–sulfur systems.

Graphical abstract: A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2013
Accepted
22 Aug 2013
First published
22 Aug 2013

J. Mater. Chem. A, 2013,1, 13283-13289

A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles

F. Sun, J. Wang, D. Long, W. Qiao, L. Ling, C. Lv and R. Cai, J. Mater. Chem. A, 2013, 1, 13283 DOI: 10.1039/C3TA12846F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements