Preparation of VxW1−xO2(M)@SiO2 ultrathin nanostructures with high optical performance and optimization for smart windows by etching†
Abstract
A fast, low-temperature hydrothermal method was introduced to prepare a VxW1−xO2(B) ultrathin nanostructure which can be easily transformed into VxW1−xO2(M) via a fast annealing process in an inert atmosphere. Thermochromic foils coated with ultrathin V0.98W0.02O2(M) nanopowders exhibited unsatisfactory optical properties with a weak solar regulation efficiency (ΔTsol, 4.6%) and a low luminous transmittance (Tlum-L, 15.73%) in a low-temperature state. Coating the VxW1−xO2(M) nanostructure with a thin shell of SiO2 can improve the optical performance of the thermochromic foils resulting in ΔTsol of 7.15% and Tlum-L of 25.74%. Furthermore, etching the V0.98W0.02O2(M)@SiO2 core–shell nanostructure with diluted hydrochloric acid (HCl) can optimize the optical properties of the thermochromic foils well, resulting in ΔTsol and Tlum-L of up to 10.18% and 37.37% owing to the decreased size. In summary, we employed a simple method to synthesize V1−xWxO2@SiO2 ultrathin nanostructures and provided new insight into optimizing VO2-based thermochromic windows.