Issue 37, 2013

CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material

Abstract

The efficient conversion of heat into electricity using a thermoelectric approach requires high performance materials with the thermoelectric figure of merit ZT ≥ 1. Here we report on bulk CuCrSe2, which exhibits a very high ZT ∼ 1 at 773 K. The titled compound exhibits an electrical resistivity of ∼2.8 mΩ cm, a Seebeck coefficient of ∼160 μV K−1, together with very low thermal conductivity ∼7 mW cm−1 K−1 at 773 K. The very low thermal conductivity of bulk CuCrSe2 is attributed to phonon scattering by various sources such as (i) superionic Cu ions between the CrSe2 layers, (ii) nanoscale precipitates in the bulk and (iii) natural grain boundaries due to the layered structure of the material. This unusual combination of thermoelectric properties for CuCrSe2 suggests that it is an ideal example of the phonon glass and electron crystal approach.

Graphical abstract: CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material

Article information

Article type
Paper
Submitted
15 May 2013
Accepted
03 Jul 2013
First published
04 Jul 2013

J. Mater. Chem. A, 2013,1, 11289-11294

CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material

S. Bhattacharya, R. Basu, R. Bhatt, S. Pitale, A. Singh, D. K. Aswal, S. K. Gupta, M. Navaneethan and Y. Hayakawa, J. Mater. Chem. A, 2013, 1, 11289 DOI: 10.1039/C3TA11903C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements