Issue 30, 2013

Superior electrochemical performance of ultrasmall SnS2nanocrystals decorated on flexible RGO in lithium-ion batteries

Abstract

A hybrid structure involving efficient plentiful ultrasmall SnS2 nanocrystals decorated on flexible reduced graphene oxide (RGO) has been successfully realized via a simple refluxing method. Compared to previous studies, the ultrasmall SnS2 nanocrystals can compactly and orderly cover the RGO nanosheets, increasing the loading number of SnS2 per unit area of the RGO substrates. The ultrasmall SnS2 nanocrystals@RGO nanocomposites were investigated as electrode materials for lithium-ion batteries. In this hybrid structure, RGO was not only used as a solid support to uniformly distribute the SnS2 nanocrystals, but also as a carrier to accelerate electron transport. In addition, the uniform size and homogeneous SnS2 nanocrystals on the RGO nanosheets reduced electrode polarization, resulting in excellent electrochemical performance for lithium-ion batteries. A specific capacity up to 1034 mA h g−1 was realized from an ultrasmall SnS2 nanocrystals@RGO electrode even after 200 cycles at 0.1 C. Importantly, the ultrasmall SnS2 nanocrystals@RGO electrode showed excellent capacity retention for up to 450 cycles even at a high rate of 5 C. The cost-effective synthesis of SnS2 nanocrystals@RGO and excellent electrochemical performance indicates the great potential for this type of nanocomposites as an active electrode for lithium-ion batteries.

Graphical abstract: Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2013
Accepted
09 May 2013
First published
10 May 2013

J. Mater. Chem. A, 2013,1, 8658-8664

Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries

L. Mei, C. Xu, T. Yang, J. Ma, L. Chen, Q. Li and T. Wang, J. Mater. Chem. A, 2013, 1, 8658 DOI: 10.1039/C3TA11269A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements