Issue 10, 2013

Self-assembled hydrophobic surface generated from a helical nanofilament (B4) liquid crystal phase

Abstract

Hydrophobic air/liquid crystal (LC) surfaces exhibiting self-assembled dual scale roughness have been made by simple cooling of a bent-core mesogen from its high temperature isotropic melt through two liquid crystal phases. The transition to the fluid smectic B2 phase generates micron-scale toric focal conic domains (TFCDs) at the surface. Upon further cooling into the hexatic smectic B4 phase these TFCD structures are preserved and become textured by the nanometer-sized helical nanofilaments (HNFs) of the B4. The resulting TFCD/HNF surface is hydrophobic and shows clear evidence for surface tension reduction characteristic of dual-scale roughness, suggesting a simple self-assembly-based approach to low surface tension surfaces using LC morphology.

Graphical abstract: Self-assembled hydrophobic surface generated from a helical nanofilament (B4) liquid crystal phase

Supplementary files

Article information

Article type
Communication
Submitted
26 Sep 2012
Accepted
14 Jan 2013
First published
31 Jan 2013

Soft Matter, 2013,9, 2793-2797

Self-assembled hydrophobic surface generated from a helical nanofilament (B4) liquid crystal phase

H. Kim, Y. Yi, D. Chen, E. Korblova, D. M. Walba, N. A. Clark and D. K. Yoon, Soft Matter, 2013, 9, 2793 DOI: 10.1039/C3SM27221D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements