Issue 28, 2013

Cholesterol modulates the fusogenic activity of a membranotropic domain of the FIV glycoprotein gp36

Abstract

Lipid composition of viral envelopes is usually rich in sphingolipids and cholesterol (CHOL). These components have a stiffening effect on the membrane, thus enhancing the energetic barrier to be overcome for its fusion with the T-cell plasma membrane, a fundamental step of the infection process. In this work, we demonstrate that the octapeptide (C8) corresponding to the Trp770–Ile777 sequence of the Feline Immunodeficiency Virus gp36 is highly effective in inducing the fusion of palmitoyl oleoyl phosphatidylcholine (POPC)/sphingomyelin (SM)/CHOL membranes. We analyze the molecular mechanism of the C8–membrane interactions combining Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and molecular dynamics simulations. A strict interplay among the different lipids in the peptide-induced fusion mechanism is highlighted. Since CHOL preferentially locates close to SM, POPC molecules remain relatively free to interact with the peptide, driving its positioning at the membrane interface. Here, C8 comes in contact with CHOL-interacting SM molecules, causing a strong perturbation of acyl chain ordering, which is a necessary condition for membrane fusion. Our findings suggest that CHOL rules, by an indirect mechanism, the activity of viral fusion glycoproteins.

Graphical abstract: Cholesterol modulates the fusogenic activity of a membranotropic domain of the FIV glycoprotein gp36

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2013
Accepted
09 May 2013
First published
20 May 2013

Soft Matter, 2013,9, 6442-6456

Cholesterol modulates the fusogenic activity of a membranotropic domain of the FIV glycoprotein gp36

G. Vitiello, G. Fragneto, A. A. Petruk, A. Falanga, S. Galdiero, A. M. D'Ursi, A. Merlino and G. D'Errico, Soft Matter, 2013, 9, 6442 DOI: 10.1039/C3SM50553G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements