Issue 13, 2013

Understanding and tuning the self-assembly of polyether-based triblock terpolymers in aqueous solution

Abstract

The synthesis and self-assembly of well-defined poly(ethylene oxide)-block-poly(allyl glycidyl ether)-block-poly(tert-butyl glycidyl ether) (PEO-b-PAGE-b-PtBGE) triblock terpolymers with varying block lengths of PAGE and PtBGE are reported. The materials were synthesized using sequential living anionic ring-opening polymerization (AROP). The middle block, PAGE, was further modified by post-polymerization addition of 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranose via thiol–ene chemistry, resulting in PEO-b-PAGEGal-b-PtBGE. Self-assembly of the terpolymers in aqueous media resulted in the predominant formation of core–shell–corona architectures and the aggregates featured a PtBGE core, a PAGE shell, and a PEO corona. The structures were investigated using dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM) measurements. In addition, the presence of a PEO corona rendered the formed micellar structures thermo-responsive, as demonstrated using turbidimetry. Depending on the ratio of hydrophilic to hydrophobic segments and on the thermal history of the samples, several micellar morphologies could be identified, including spheres of different size, worm-like structures, and vesicles. More important, both reversible and irreversible structural rearrangements could be identified during the heating–cooling cycles.

Graphical abstract: Understanding and tuning the self-assembly of polyether-based triblock terpolymers in aqueous solution

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2012
Accepted
28 Jan 2013
First published
15 Feb 2013

Soft Matter, 2013,9, 3509-3520

Understanding and tuning the self-assembly of polyether-based triblock terpolymers in aqueous solution

M. J. Barthel, U. Mansfeld, S. Hoeppener, J. A. Czaplewska, F. H. Schacher and U. S. Schubert, Soft Matter, 2013, 9, 3509 DOI: 10.1039/C3SM00151B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements