Issue 45, 2013

Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells

Abstract

The synthesis, properties and application of a Cu(2,2′-biquinoline-4,4′-dicarboxylic acid)2 complex in dye-sensitized solar cells (DSSC) are described. The complex is electrochemically stable and strongly absorbing with a molar extinction coefficient at λ(max) = 564 nm of 11 700 M−1 cm−1 (in MeOH). Experimental and computational data indicate that the HOMO, LUMO and electronic excited state energy levels are appropriate for functionality in a DSSC. From cyclic voltammetry the HOMO is estimated to be −5.27 eV, as supported by computational work, which locates the HOMO at −5.78 eV. From electrochemical, absorption and emission experiments, the MLCT energy levels are expected to be appropriate for electron injection into the TiO2 conduction band. Our computations support this and locate the key MLCT transition at 563 nm. Despite this, the efficiency in DSSCs is extremely low (<0.1%) suggesting that the dye does not inject excited electrons into the TiO2 conduction band.

Graphical abstract: Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
06 Sep 2013
Accepted
24 Sep 2013
First published
25 Sep 2013

RSC Adv., 2013,3, 23361-23369

Investigation of a copper(I) biquinoline complex for application in dye-sensitized solar cells

K. A. Wills, H. J. Mandujano-Ramírez, G. Merino, D. Mattia, T. Hewat, N. Robertson, G. Oskam, M. D. Jones, S. E. Lewis and P. J. Cameron, RSC Adv., 2013, 3, 23361 DOI: 10.1039/C3RA44936J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements