Jump to main content
Jump to site search

Issue 27, 2013
Previous Article Next Article

Thiol–ene coupling kinetics of D-limonene: a versatile ‘non-click’ free-radical reaction involving a natural terpene

Author affiliations

Abstract

The free-radical photoinduced thiolene reaction between D-limonene, as renewable diolefinic substrate, and two mono-/tri-functional thiols (iso-tridecyl 3-mercaptopropionate and trimethylolpropane tris(3-mercaptopropionate)), has been investigated kinetically to define a relationship between alkene structure and reactivity. Separate thiol–ene solutions of the appropriate thiol in d-chloroform, supplemented with 1.0 wt% of DMPA (Irgacure 651), were subjected to polychromatic UV-irradiation and the chemical changes monitored discontinuously via1H NMR spectroscopy to quantify double bond conversion. The kinetic concentration profiles were modeled analytically and simulated in the application software COPASI for parameter estimation and to verify if the experimental data explained a suggested mechanistic scheme. Empirical results demonstrate that the external vinylidene bond of limonene reacts about 6.5 times faster with thiol than the internal trisubstituted 1-methyl-cyclohexene unsaturation. The selectivity observed for the two unsaturations was successfully explained by means of a simplified steady-state equation derived from the sequential reaction mechanism accounting for propagation and chain-transfer elementary steps with estimated rate coefficients. Kinetic modeling results attribute the difference in selectivity partially to steric impediments controlling thiyl-radical insertion onto the double bonds and predominantly to differences in relative energy between the two tertiary insertion carbon radical intermediates. The rate-limiting step was identified as the third chain-transfer hydrogen-abstraction reaction promoted by the second insertion carbon radical intermediate. High thiol–ene conversions were obtained in a timely fashion without major influence of secondary reactions demonstrating the suitability of this reaction for network forming purposes. The mechanistic and kinetic information collected can be used as a quantitative predictive tool to assess the potential use of D-limonene in thiol–ene network forming systems involving multifunctional alkyl ester 3-mercaptopropionates.

Graphical abstract: Thiol–ene coupling kinetics of d-limonene: a versatile ‘non-click’ free-radical reaction involving a natural terpene

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Feb 2013, accepted on 04 Apr 2013 and first published on 08 Apr 2013


Article type: Paper
DOI: 10.1039/C3RA40696B
Citation: RSC Adv., 2013,3, 11021-11034
  • Open access: Creative Commons BY license
  •   Request permissions

    Thiol–ene coupling kinetics of D-limonene: a versatile ‘non-click’ free-radical reaction involving a natural terpene

    M. Claudino, M. Jonsson and M. Johansson, RSC Adv., 2013, 3, 11021
    DOI: 10.1039/C3RA40696B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements