Issue 20, 2013

Isolation of water soluble carbon nanotubes with network structure possessing multipodal junctions and its magnetic property

Abstract

Water soluble carbon nanotubes (wsCNTs) with network structure possessing multipodal junctions were isolated by the oxidative treatment of carbon soot (generally discarded as waste during fullerene synthesis) using dilute nitric acid as black crystalline solid. wsCNTs having multipodal junctions are highly soluble in water due to the incorporation of adequate amount of hydrophilic carboxylic acid groups. Microscopic investigation shows the presence of extensive networked wsCNTs possessing different types of junctions such as tri (“Y”, “T”), tetrapodal, pentapodal and even “H” type junctions. Furthermore these wsCNTs possessing interesting magnetic properties due to presence of multipodal junctions and defective surfacial structures, usually known as surfacial ‘defects’ on graphitic pool (sp2 hybridized carbon atoms) of nanotubes. Easy solubility along with magnetic properties makes these wsCNTs to be used as a potential probe for their use in biological and spintronic applications respectively.

Graphical abstract: Isolation of water soluble carbon nanotubes with network structure possessing multipodal junctions and its magnetic property

Article information

Article type
Paper
Submitted
17 Nov 2012
Accepted
28 Feb 2013
First published
22 Mar 2013

RSC Adv., 2013,3, 7306-7312

Isolation of water soluble carbon nanotubes with network structure possessing multipodal junctions and its magnetic property

P. Dubey, S. K. Sonkar, S. Majumder, K. M. Tripathi and S. Sarkar, RSC Adv., 2013, 3, 7306 DOI: 10.1039/C3RA22933E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements