Direct C–H bond arylation reactions between heteroarenes and aryl halides provide an atom-economical and “green” alternative to standard cross-coupling reactions (Stille, Suzuki, etc.). Unfortunately, this reaction is not selective and more than one type of C–H bond may react, which, during polymerization reactions, can lead to cross-linked materials. This paper reports the preparation of PDTSiTPD and PDTGeTPD, which have exhibited high efficiencies in organic solar cells, using direct (hetero)arylation polymerization methodologies. In order to circumvent side reactions leading to cross-linked polymers, a number of new dithieno[3,2-b:2′,3′-d]silole (DTSi) monomers were prepared where the β-positions were blocked with alkyl chains and the alkyl groups on the heteroatom were modified. Co-polymers were synthesized with N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) and the oxygen congener, N-alkylfuro[3,4-c]pyrrole-4,6-dione (FPD). However, the resulting polymers were not planar, and conjugation of the backbone was disrupted. An efficiency of 1.7% was achieved in bulk heterojunction solar cells (BHJ-SCs).