Issue 9, 2013

Hybrid materials consisting of an all-conjugated polythiophene backbone and grafted hydrophilic poly(ethylene glycol) chains

Abstract

Organic hybrid materials consisting of an all-conjugated polythiophene backbone and well-defined poly(ethylene glycol) (PEG) grafted chains have been prepared by anodic polymerization of chemically synthesized macromonomers. The latter consist of a pentathiophene sequence in which the central ring bears a PEG chain with Mw = 1000 or 2000 at the 3-position. The influence of the polymerization potential, the length of the PEG branches and the dopant agent on the structure and properties of the graft copolymers has been examined. The chemical structure of the grafted materials has been corroborated by FTIR and X-ray photoelectron spectroscopies. Scanning electron microscopy and atomic force microscopy studies reveal that the morphology and topography of these materials are influenced by the above mentioned factors, even though homogeneous films showing a compact distribution of nanoaggregates, very flat surfaces (i.e. roughness < 15 Å) and nanometric thickness (i.e. 100–500 nm) were obtained in all cases. Cyclic voltammetry assays have been used to determine the presence of charged species, the electroactivity, the electrostability and the formation of cross-links. The electrochemical stability of the copolymer with grafted PEG chains of Mw = 1000 has been found to increase with the number of consecutive oxidation–reduction cycles (self-electrostabilizing behavior). Finally, a preliminary investigation into the applicability of these hybrid materials as active surfaces for the selective adsorption of proteins is presented.

Graphical abstract: Hybrid materials consisting of an all-conjugated polythiophene backbone and grafted hydrophilic poly(ethylene glycol) chains

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2013
Accepted
05 Feb 2013
First published
01 Mar 2013

Polym. Chem., 2013,4, 2709-2723

Hybrid materials consisting of an all-conjugated polythiophene backbone and grafted hydrophilic poly(ethylene glycol) chains

A. Bendrea, G. Fabregat, L. Cianga, F. Estrany, L. J. del Valle, I. Cianga and C. Alemán, Polym. Chem., 2013, 4, 2709 DOI: 10.1039/C3PY00029J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements