Issue 6, 2013

Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate

Abstract

The dose-dependent variation of oxidative cellular damage imposed by UVB exposure in a representative estuarine bacterial strain, Pseudomonas sp. NT5I1.2B, was studied at different growth phases (mid-exponential, late-exponential, and stationary), growth temperatures (15 °C and 25 °C) and growth media (nutrient-rich Tryptic Soy Broth [TSB] and nutrient-poor M9). Survival and markers of oxidative damage (lipid peroxidation, protein carbonylation, DNA strand breakage, and DNA–protein cross-links) were monitored during exposure to increasing UVB doses (0–60 kJ m−2). Oxidative damage did not follow a clear linear dose-dependent pattern, particularly at high UVB doses (>10 kJ m−2), suggesting a dynamic interaction between damage induction and repair during irradiation and/or saturation of oxidative damage. Survival of stationary phase cells generally exceeded that of exponential phase cells by up to 33.5 times; the latter displayed enhanced levels of DNA–protein cross-links (up to 15.6-fold) and protein carbonylation (up to 6.0-fold). Survival of mid-exponential phase cells was generally higher at 15 °C than at 25 °C (up to 6.6-fold), which was accompanied by lower levels of DNA strand breaks (up to 4000-fold), suggesting a temperature effect on reactive oxygen species (ROS) generation and/or ROS interaction with cellular targets. Survival under medium–high UVB doses (>10 kJ m−2) was generally higher (up to 5.4-fold) in cells grown in TSB than in M9. These results highlight the influence of growth conditions preceding irradiation on the extent of oxidative damage induced by UVB exposure in bacteria.

Graphical abstract: Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate

Article information

Article type
Paper
Submitted
22 Oct 2012
Accepted
21 Feb 2013
First published
22 Feb 2013

Photochem. Photobiol. Sci., 2013,12, 974-986

Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate

A. L. Santos, N. C. M. Gomes, I. Henriques, A. Almeida, A. Correia and Â. Cunha, Photochem. Photobiol. Sci., 2013, 12, 974 DOI: 10.1039/C3PP25353H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements