Issue 8, 2013

The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides – a combined femtosecond broadband time-resolved fluorescence and transient absorption study

Abstract

A combined method of femtosecond broadband time-resolved fluorescence (fs-TRF) and transient absorption (fs-TA) was employed to investigate the excited state dynamics of 2′-deoxyguanosine (dG) and 2′-deoxyguanosine 5′-monophosphate (dGMP). Comparative fs-TRF and fs-TA measurements were conducted on dG and dGMP in neutral water, deuterated water, and methanol with excitation wavelengths of 245, 267 and 285 nm. Very similar results were observed with dG and dGMP. The data provide compelling evidence for the co-existence of two nonradiative pathways. One is the generally recognized Laππ* mediated channel, the other involves an unprecedented weakly emissive state which plays a significant role in the overall deactivation processes. The Laππ* channel features biphasic dynamics with time constants (τ1/τ2) of ∼0.2/0.8 ps in water and ∼0.25/1.0 ps in methanol. The biphasic decay arises due to a partial transfer with τ1 of the Laππ* population to the newly identified state followed by conversion in τ2 of the remaining Laππ* molecules into the electronic ground state. The channel mediated by the weakly emissive species shows solvent-dependent dynamics with time constants (τ3) of ∼2.0 ps in water, ∼2.3 ps in deuterated water, and ∼4.1 ps in methanol. The species features absorption at UV wavelengths (∼300–400 nm) and exhibits deeply red-shifted fluorescence (λmax ∼ 520 nm) with polarization direction varied markedly from that of the Laππ* but close to the Lbππ*. This species acts as an effective quenching state to the radiative decay of the brightly emissive Laππ* and Lbππ*. It sets in promptly (<∼50 fs) after the photoexcitation and is further populated through nonadiabatic coupling with the Laππ*. The overall involvement of this state is facilitated with excitation at high energy and is favoured in methanol over water. According to the spectral character and the solvent effect in particular the kinetic isotope effect, the species is tentatively associated to the πσ* state with charge transfer (CT) character which is considered to be preferentially stabilized by hydrogen-bonding between the guanine amino and surrounding solvent molecules. The result of this study leads to a dramatically different picture of guanine deactivation. It demonstrates a crucial role of the solvent in shaping the nonradiative dynamics of guanine nucleosides and nucleotides. The data presented are important for understanding the detailed photophysics of not only the monomeric guanine but also DNA assemblies that contain guanine in base pairs or have a guanine tetrad as the structural motif.

Graphical abstract: The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides – a combined femtosecond broadband time-resolved fluorescence and transient absorption study

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2012
Accepted
04 Mar 2013
First published
04 Mar 2013

Photochem. Photobiol. Sci., 2013,12, 1351-1365

The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides – a combined femtosecond broadband time-resolved fluorescence and transient absorption study

C. C. Cheng, C. Ma, C. T. Chan, K. Y. Ho and W. Kwok, Photochem. Photobiol. Sci., 2013, 12, 1351 DOI: 10.1039/C3PP25450J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements