Issue 48, 2013

Non-covalent duplex to duplex crosslinking of DNA in solution revealed by single molecule force spectroscopy

Abstract

Small molecules that interact with DNA, disrupting the binding of transcription factors or crosslinking DNA into larger structures, have significant potential as cancer therapies and in nanotechnology. Bisintercalators, including natural products such as echinomycin and rationally designed molecules such as the bis-9-aminoacridine-4-carboxamides, are key examples. There is little knowledge of the propensity of these molecules to crosslink duplex DNA. Here we use single molecule force spectroscopy to assay the crosslinking capabilities of bisintercalators. We show that bis-9-aminoacridine-4-carboxamides with both rigid and flexible linkers are able to crosslink duplex strands of DNA, and estimate the equilibrium free energy of a 9-aminoacridine-4-carboxamide bisintercalator from DNA at 5.03 kJ mol−1. Unexpectedly, we find that echinomycin and its synthetic analogue TANDEM are capable of sequence-specific crosslinking of the terminal base pairs of two duplex DNA strands. In the crowded environment of the nucleosome, small molecules that crosslink neighbouring DNA strands may be expected to have significant effects on transcription, while a small molecule that facilitates sequence-specific blunt-end ligation of DNA may find applications in the developing field of DNA nanotechnology.

Graphical abstract: Non-covalent duplex to duplex crosslinking of DNA in solution revealed by single molecule force spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2013
Accepted
14 Oct 2013
First published
15 Oct 2013

Org. Biomol. Chem., 2013,11, 8340-8347

Non-covalent duplex to duplex crosslinking of DNA in solution revealed by single molecule force spectroscopy

B. D. Rackham, L. A. Howell, A. N. Round and M. Searcey, Org. Biomol. Chem., 2013, 11, 8340 DOI: 10.1039/C3OB42009D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements