Issue 22, 2013

Hybrid organic PVDF–inorganic M–rGO–TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation–H2 production

Abstract

This work focused on the development of a hybrid organic–inorganic TiO2 nanocomposite, which demonstrates the first ever report on harmful volatile organic compound (VOC) sensing and photocatalytic degradation–H2 production. The sensing and photocatalytic properties are enhanced by the synergetic effects of well-structured TiO2 nanotubes, metal nanoparticles and reduced graphene oxide loading for enhanced light absorption and charge-transfer kinetics. Hybridization of a functionalized TiO2 nanocomposite with a polyvinylidene fluoride (PVDF) matrix induced strong cross-linking networks between the inorganic–organic components, which promote mechanical reinforcement-flexibility and highly porous asymmetric structures. The developed solution processable nanocomposite has immense potential to remedy the global environmental and energy issues by producing clean water/air and energy from organic compound waste.

Graphical abstract: Hybrid organic PVDF–inorganic M–rGO–TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation–H2 production

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2013
Accepted
06 Sep 2013
First published
13 Sep 2013

Nanoscale, 2013,5, 11283-11290

Hybrid organic PVDF–inorganic M–rGO–TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation–H2 production

W. L. Ong, M. Gao and G. W. Ho, Nanoscale, 2013, 5, 11283 DOI: 10.1039/C3NR03276K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements