Electrically driven ultraviolet random lasing from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterojunction
Abstract
Electrically pumped lasing action has been realized in ZnO from an n-MgZnO/i-ZnO/SiO2/p-Si asymmetric double heterostructure, an ultralow threshold of 3.9 mA was obtained. The mechanism of the laser is associated with the in-plane random resonator cavities formed in the ZnO films and the elaborate hollow-shaped SiO2 cladding pattern, which prevent the lateral diffusion of injection current and ultimately lower the threshold current of the laser diode. In addition, a waveguide mechanism due to different refractive indices of three epilayers enhances the guided optical field on the ZnO side, resulting in an improved light
Please wait while we load your content...