Issue 24, 2013

Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties

Abstract

We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy measurements showed that the SiO2@Fe3O4 core/shell nanorods with a length and diameter of about 60 and 25 nm, respectively, were almost grown perpendicularly on both side surfaces of graphene sheets. The measured electromagnetic parameters showed that the 3D architecture exhibited excellent electromagnetic wave absorption properties, i.e., more than 99% of electromagnetic wave energy could be attenuated by the 3D architecture with an addition amount of only 20 wt% in the paraffin matrix. In addition, the growth mechanism of the 3D architecture was proposed, and thus, the strategy presented here could be used as a typical method to synthesize other 3D magnetic graphene nanostructures for extending their application areas.

Graphical abstract: Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2013
Accepted
01 Oct 2013
First published
07 Oct 2013

Nanoscale, 2013,5, 12296-12303

Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties

Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang and Q. Ouyang, Nanoscale, 2013, 5, 12296 DOI: 10.1039/C3NR04058E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements