Issue 23, 2013

Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering

Abstract

Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.

Graphical abstract: Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering

Supplementary files

Article information

Article type
Communication
Submitted
22 Jul 2013
Accepted
21 Sep 2013
First published
15 Oct 2013

Nanoscale, 2013,5, 11620-11624

Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering

J. Lee, D. Chen, X. Li, S. Yoo, L. A. Bottomley, M. A. El-Sayed, S. Park and M. Liu, Nanoscale, 2013, 5, 11620 DOI: 10.1039/C3NR03363E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements