Issue 20, 2013

Design of meso-TiO2@MnOx–CeOx/CNTs with a core–shell structure as DeNOxcatalysts: promotion of activity, stability and SO2-tolerance

Abstract

Developing low-temperature deNOx catalysts with high catalytic activity, SO2-tolerance and stability is highly desirable but remains challenging. Herein, by coating the mesoporous TiO2 layers on carbon nanotubes (CNTs)-supported MnOx and CeOx nanoparticles (NPs), we obtained a core–shell structural deNOx catalyst with high catalytic activity, good SO2-tolerance and enhanced stability. Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and NH3 temperature-programmed desorption have been used to elucidate the structure and surface properties of the obtained catalysts. Both the specific surface area and chemisorbed oxygen species are enhanced by the coating of meso-TiO2 sheaths. The meso-TiO2 sheaths not only enhance the acid strength but also raise acid amounts. Moreover, there is a strong interaction among the manganese oxide, cerium oxide and meso-TiO2 sheaths. Based on these favorable properties, the meso-TiO2 coated catalyst exhibits a higher activity and more extensive operating-temperature window, compared to the uncoated catalyst. In addition, the meso-TiO2 sheaths can serve as an effective barrier to prevent the aggregation of metal oxide NPs during stability testing. As a result, the meso-TiO2 overcoated catalyst exhibits a much better stability than the uncoated one. More importantly, the meso-TiO2 sheaths can not only prevent the generation of ammonium sulfate species from blocking the active sites but also inhibit the formation of manganese sulfate, resulting in a higher SO2-tolerance. These results indicate that the design of a core–shell structure is effective to promote the performance of deNOx catalysts.

Graphical abstract: Design of meso-TiO2@MnOx–CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2013
Accepted
28 Jul 2013
First published
01 Aug 2013

Nanoscale, 2013,5, 9821-9829

Design of meso-TiO2@MnOx–CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance

L. Zhang, D. Zhang, J. Zhang, S. Cai, C. Fang, L. Huang, H. Li, R. Gao and L. Shi, Nanoscale, 2013, 5, 9821 DOI: 10.1039/C3NR03150K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements