Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 20, 2013
Previous Article Next Article

Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2

Author affiliations


Thickness is one of the fundamental parameters that define the electronic, optical, and thermal properties of two-dimensional (2D) crystals. Phonons in molybdenum disulfide (MoS2) were recently found to exhibit unique thickness dependence due to the interplay between short and long range interactions. Here we report Raman spectra of atomically thin sheets of WS2 and WSe2, isoelectronic compounds of MoS2, in the mono- to few-layer thickness regime. We show that, similar to the case of MoS2, the characteristic A1g and E2g1 modes exhibit stiffening and softening with increasing number of layers, respectively, with a small shift of less than 3 cm−1 due to large mass of the atoms. Thickness dependence is also observed in a series of multiphonon bands arising from overtone, combination, and zone edge phonons, whose intensity exhibit significant enhancement in excitonic resonance conditions. Some of these multiphonon peaks are found to be absent only in monolayers. These features provide a unique fingerprint and rapid identification for monolayer flakes.

Graphical abstract: Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Jun 2013, accepted on 05 Aug 2013 and first published on 08 Aug 2013

Article type: Paper
DOI: 10.1039/C3NR03052K
Citation: Nanoscale, 2013,5, 9677-9683

  •   Request permissions

    Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2

    W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan and G. Eda, Nanoscale, 2013, 5, 9677
    DOI: 10.1039/C3NR03052K

Search articles by author