Issue 17, 2013

Influence of geometric nanoparticle rotation on cellular internalization process

Abstract

It is increasingly recognized that the investigation of the rotational motion of geometric nanoparticles in the cellular internalization process is significant to understand certain fundamental cellular activities, such as endocytosis. However, the mechanism of rotation of geometric nanoparticles in the internalization process is still largely unknown. Here, we investigate the rotational dynamics of geometric nanoparticles when they adhere onto or are wrapped by lipid membranes, by using dissipative particle dynamics. A variety of rotational modes of the nanoparticles are observed, which are closely related to the complicated competition in the internalization process. We find that the breaking of geometric symmetry of a nanoparticle is important for the occurrence of particle rotation, while its effect can be changed by the orientation of the nanoparticles and the affinity between the ligands and the receptors. Importantly, it is found by our simulations that the rotational mode even determines the possible perturbation of the geometric nanoparticle to the membrane and the configuration between the nanoparticle and lipid membrane in the internalization process. These results provide a new strategy and also provide pivotal insight for the design of nanoparticles as advanced drug-delivery vectors to cells.

Graphical abstract: Influence of geometric nanoparticle rotation on cellular internalization process

Article information

Article type
Paper
Submitted
29 Mar 2013
Accepted
17 May 2013
First published
20 May 2013

Nanoscale, 2013,5, 7998-8006

Influence of geometric nanoparticle rotation on cellular internalization process

K. Yang, B. Yuan and Y. Ma, Nanoscale, 2013, 5, 7998 DOI: 10.1039/C3NR01561K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements